1. Solve the linear system by using Gaussian elimination:
$$\begin{bmatrix} 2 & 0 & 1\\ 1 & 1 & 0\\ 1 & 0 & 1 \end{bmatrix}\begin{bmatrix} x\\ y\\ z \end{bmatrix} = \begin{bmatrix} 1\\ 2\\ 3 \end{bmatrix}$$
  1. Find the inverse of the above matrix by using Gaussian elimination, write down the rank of the matrix and explain why you get & didn’t get solutions for question 1.

  2. Solve the system without using Gaussian elimination:

$$\begin{bmatrix} 2 & 0 & 1\\ 1 & 1 & 0\\ 1 & 0 & 1 \end{bmatrix}\begin{bmatrix} x\\ y\\ z \end{bmatrix} = \begin{bmatrix} 2\\ 3\\ 4 \end{bmatrix}$$

Like this post? Share on: TwitterFacebookEmail


Published

Last Updated

Category

Chapter 5 Solving Linear system using matrix

Stay in Touch